Analytics-Einstellungen

Wechseln zu: Navigation, Suche

Das Moodle Learning Analytics System erfordert vorab einige Einstellungen, bevor es genutzt werden kann. Die Moodle-Administration kann die Analytics-Einstellungen auf der Seite Website-Administration (oder im Block Einstellungen > Website-Administration) > Analytics > Analytics-Einstellungen vornehmen.

Website-Informationen

Neue Funktionalität
in Moodle 3.7!

Die Website-Informationen werden verwendet, damit die Learning Analytics Modelle die Besonderheiten einer Institution mit einbeziehen. Diese Informationen wird als Teil der Moodle-Site-Datensammlung übermittelt, wenn Sie Ihre Moodle-Site registrieren. Das ermöglicht es dem Moodle HQ zu verstehen, welche Bereiche in Learning Analytics am häufigsten verwendet werden, und die Ressourcen für die Weiterentwicklung entsprechend zu priorisieren.

Analytics-Einstellungen vornehmen

configure settings.png

Die Einstellungen für das Learning Analytics System von Moodle haben vernünftige Voreinstellungen. Der Zugriff erfolgt über die Seite Website-Administration > Analytics > Analytics-Einstellungen.

Prozessor für Vorhersagen

Vorhersage-Prozessoren sind Backends für maschinelles Lernen, die Daten verarbeiten, die von den Zielen und Indikatoren generiert werden und aus diesen verarbeiteten Daten Vorhersagen generieren. Die Moodle-Standardinstallation stellt zwei Vorhersage-Prozessoren zur Verfügung:

   pip install moodlemlbackend

Log-Speicher

Ab Moodle 2.7 ist Logdaten Standard der standardmäßige Speicher für Logdaten. Wenn Sie aus irgendwelchen Gründen Daten im alten Legacy-Speicher Logdaten Alt gespeichert haben, dann können Sie diesen hier einstellen, so dass das Analytics-System auf diese Daten zugreift.

Zeitaufteilungsmethode

Die Zeitaufteilungsmethode legt fest, wie oft Einschätzungen generiert werden und wie viele Informationen für diese Berechnung verwendet werden. Wenn Sie geeignete proportionale Zeitintervalle verwenden, können Kurse mit verschiedener Kursdauer verwendet werden, um ein einzelnes Modell zu trainieren.

timesplitting.png

Jede Zeitaufteilungsmethode unterteilt die Kursdauer in Zeitabschnitte. Am Ende jedes so definierten Zeitabschnitts läuft die Vorhersage-Engine und generiert Vorhersagen. Es wird empfohlen, nur die Zeiteinteilungsmethoden zu aktivieren, die Sie tatsächlich verwenden wollen, denn der Vorhersage-Prozess iteriert über alle aktivierten Zeitaufteilungsmethoden und dauert folglich um so länger, je mehr Methoden aktiviert sind.

Ausgabeverzeichnis

outputdir.png

Mit dieser Einstellung legen Sie fest, wo die Daten des Machine Learning Backends gespeichert werden. Stellen Sie sicher, dass dieses Verzeichnis existiert und der Webserver dort Schreibrechte hat. Diese Einstellung kann von Moodle-Sites verwendet werden, die als Cluster betrieben werden, um ein gemeinsames Ausgabeverzeichnis zu nutzen. Dieses Verzeichnis kann von Backends für maschinelles Lernen verwendet werden, um trainierte Algorithmen zu speichern, die später zur Berechnung von Vorhersagen verwendet werden. Der Moodle-Cronjob verhindert, dass Analytics-spezifische geplante Vorgänge gleichzeitig ausgeführt werden, die die Algorithmen trainieren und daraus Vorhersagen berechnen.

Geplante Vorgänge

Die meisten Analytics-API-Prozesse werden über geplante Vorgänge ausgeführt. Die Prozesse lesen die Logdaten der Aktivitäten und benötigen etwas Zeit für die Ausführung. Es gibt die geplanten Vorgänge Trainingsmodelle und Modelle vorhersagen auf der Seite auf die Seite Website-Administration (oder im Block Einstellungen > Website-Administration) > Server > Geplante Vorgänge. Es wird empfohlen, die Ausführzeiten zu konfigurieren, so dass diese geplanten Vorgänge jede Nacht ausgeführt werden.

Rollen definieren

Das Moodle Learning Analytics System verwendet einige Fähigkeiten. Die entsprechenden Rechte können für einzelne Rollen auf Systemebene oder in bestimmten Kontexten vergeben oder entzogen werden, um festzulegen, wer Einschätzungen sehen darf.

Um Benachrichtigungen über Einschätzungen zu erhalten und diese Einschätzungen anzusehen, benötigen Nutzer/innen das Recht analytics:listinsights in dem Kontext, den das Modell analysiert. Zum Beispiel wird das Modell Teilnehmer/innen sind gefährdet auszusteigen auf einen Kurskontext angewendet. Einschätzungen werden für jede Einschreibung in den Kursen generiert, die die Kriterien des Modells erfüllen (Kurse mit Kursbeginn-Datum in der Vergangenheit und Kursende-Datum in der Zukunft, mit mindestens einem/r Trainer/in und mindestens einem/r Teilnehmer/in), und diese Einschätzungen werden an alle verschickt, die das Recht analytics:listinsights in dem jeweiligen Kurs haben. Standardmäßig haben die Rollen Trainer/in mit und ohne Bearbeitungsrecht und Manager/in dieses Recht.

Einige Modelle (z.B. Keine Lehrtätigkeit) generieren Einschätzungen auf Systemebene. Um Einschätzungen von diesen Modellen zu erhlaten, müssen Nutzer/innen eine globale Rolle mit dem Recht analytics:listinsights haben. Standardmäßig ist das für die Manager-Rolle der Fall, wenn sie auf Systemebene zugewiesen wird.

Hinweis: Administrator/innen bekommen nicht automatisch Benachrichtigungen mit Einschätzungen, sie können jedoch Details zu jeder Benachrichtigung im System einsehen. Damit auch Administrator/innen über Einschätzungen benachrichtigt werden, weisen Sie allen Administrator/innen eine zusätzliche Rolle mit dem Recht analytics:listinsights auf Systemebene zu (z.B. die Manager-Rolle).