Hinweis: Sie sind auf den Seiten der Moodle 3.2 Dokumentation. Die Dokumentation der aktuellsten Moodle-Version finden Sie hier: Bewertungen zusammenfassen.

Bewertungen zusammenfassen

Aus MoodleDocs
Wechseln zu:Navigation, Suche

Baustelle.png Diese Seite ist noch nicht vollständig übersetzt.


Diese Seite beschreibt einen einzelnen Eintrag Gesamtergebnis im Formular einer Bewertungskategorie. Zu diesem Formular gelangen Sie, wenn Sie eine Bewertungskategorie anlegen oder bearbeiten.

Die Einstellung Gesamtergebnis legt fest, wie die einzelnen Bewertungsaspekte der Kategorie zusammengefasst werden und damit eine Gesamtbewertung der Kategorie erzeugen.

Die Bewertungen der einzelnen Bewertungsaspekte der zunächst in Prozent umgerechnet (eine Zahl zwischen 0 und 1), dann gemäß der gewählten Einstellung Gesamtergebnis zusammengefasst und schließlich nach dem Dreisatz umgerechnet, so dass das Ergebnis eine Bewertung der Kategorie ist, die im Intervall zwischen Minimaler Bewertung und Maximaler Bewertung der Kategorie liegen (die Einstellungen Minimale Bewertung und Maximale Bewertung finden Sie ebenfalls im Formular der Kategorie).

Durchschnittsbewertung

The sum of all grades divided by the total number of grades.

   A1 70/100, A2 20/80, A3 10/10, category max 100:
   (0.7 + 0.25 + 1.0)/3 = 0.65 --> 65/100

Gewichteter Durchschnittswert

Each grade item can be given a weight, which is then used in the arithmetic mean aggregation to influence the importance of each item in the overall mean. In simple terms, the category "total" will be equal to the sum of the scores in each grade item, these scores being multiplied by the grade items' weights, and that sum being finally divided by the sum of the weights, as shown in this example.

   A1 70/100 weight 10, A2 20/80 weight 5, A3 10/10 weight 3, category max 100:
   (0.7*10 + 0.25*5 + 1.0*3)/18 = 0.625 --> 62.5/100

=Einfach gewichteter Durchschnittswert

The difference from Weighted mean is that weight is calculated as Maximum grade - Minimum grade for each item. 100 point assignment has weight 100, 10 point assignment has weight 10.

   A1 70/100, A2 20/80, A3 10/10, category max 100:
   (0.7*100 + 0.25*80 + 1.0*10)/190 = 0.526 --> 52.6/100

When the "Simple weighted mean" aggregation strategy is used, a grade item can act as Extra credit for the category. This means that the grade item's maximum grade will not be added to the category total's maximum grade, but the item's grade will. For example, if A3 is marked as extra credit in the above calculation:

   A1 70/100, A2 20/80, A3 (extra credit) 10/10, category max 100:
   (0.7*100 + 0.25*80 + 1.0*10)/180 = 0.556 --> 55.6/100

Durchschnittsbewertung (mit Zusatzpunkten)

Arithmetic mean with a twist. An old, now unsupported aggregation strategy provided here only for backward compatibility with old activities.

A value greater than 0 treats a grade item's grades as extra credit during aggregation. The number is a factor by which the grade value will be multiplied before it is added to the sum of all grades, but the item itself will not be counted in the division. For example:

  • Item 1 is graded 0-100 and its "Extra credit" value is set to 2
  • Item 2 is graded 0-100 and its "Extra credit" value is left at 0.0000
  • Item 3 is graded 0-100 and its "Extra credit" value is left at 0.0000
  • All 3 items belong to Category 1, which has "Mean of grades (with extra credits)" as its aggregation strategy
  • A student gets graded 20 on Item 1, 40 on Item 2 and 70 on Item 3
  • The student's total for Category 1 will be 95/100 since 20*2 + (40 + 70)/2 = 95

Median aller Bewertungen

The middle grade (or the mean of the two middle grades) when grades are arranged in order of size. The advantage over the mean is that it is not affected by outliers (grades which are uncommonly far from the mean).

   A1 70/100, A2 20/80, A3 10/10, category max 100:
   0.7 + 0.25 + 1.0 --> 0.70 --> 70/100

Niedrigste Bewertung

The result is the smallest grade after normalisation. It is usually used in combination with Aggregate only non-empty grades.

   A1 70/100, A2 20/80, A3 10/10, category max 100:
   min(0.7 + 0.25 + 1.0) = 0.25 --> 25/100

Höchste Bewertung

The result is the highest grade after normalisation.

   A1 70/100, A2 20/80, A3 10/10, category max 100:
   max(0.7 + 0.25 + 1.0) = 1.0 --> 100/100

Modus (Modalwert) aller Bewertungen

The mode is the grade that occurs the most frequently. It is more often used for non-numerical grades. The advantage over the mean is that it is not affected by outliers (grades which are uncommonly far from the mean). However it loses its meaning once there is more than one most frequently occurring grade (only one is kept), or when all the grades are different from each other.

   A1 70/100, A2 35/50, A3 20/80, A4 10/10, A5 7/10 category max 100:
   mode(0.7; 0.7; 0.25; 1.0; 0.7) = 0.7 --> 70/100

Natürlich

Neu
in Moodle 3.2!

This is the sum of all grade values, scaled by weight.

Scale grades are ignored. This is the only type that does not convert the grades to percentages internally. The Maximum grade of associated category item is calculated automatically as a sum of maximums from all aggregated items.

   A1 70/100, A2 20/80, A3 10/10:
   70 + 20 + 10 = 100/190

When the "Natural" aggregation strategy is used, a grade item can act as Extra credit for the category. This means that the grade item's maximum grade will not be added to the category total's maximum grade, but the item's grade will. Following is an example:

  • Item 1 is graded 0-100
  • Item 2 is graded 0-75
  • Item 1 has the "Act as extra credit" checkbox ticked, Item 2 doesn't.
  • Both items belong to Category 1, which has "Natural" as its aggregation strategy
  • Category 1's total will be graded 0-75
  • A student gets graded 20 on Item 1 and 70 on Item 2
  • The student's total for Category 1 will be 75/75 (20+70 = 90 but Item 1 only acts as extra credit, so it brings the total to its maximum)

Available aggregation types

Welche der o.g. Optionen verfügbar sind und welche Option die Voreinstellung ist, legt die Moodle-Administration systemweit fest. Siehe Einstellungen für Bewertungskategorien.