
JavaScript Events and more

Andrew Lyons
Senior Analyst / Developer / Integrator

JS in Moodle - brief history

When Version Format Loading Building

2001 1.0 Native JS Custom
loading

2006 1.7? YUI2 YUI Loader

2009 2.0 YUI3 YUI Loader

2012 2.5 YUI3 in Module format YUI Loader Shifter for dev and production

2015 2.9 AMD Modules RequireJS Grunt for production

2018 3.8 ES Modules RequireJS Grunt for dev and production

● All new JS code should be in an ES module (since 3.8)

● const > let > var

● Use named exports unless exporting a single class

● Listen to eslint

● Consider using a repository.js file for your fetches

● Make use of subdirectories to organise code (since 3.8)

● Don’t use jQuery unless you really have to

● Use then/catch (Not done/fail)

JS in Moodle - current recommendations

● Not spec-compliant

● Not necessary

● Not maintained

● No real benefit with modern JavaScript features

Why the jQuery hate?

● They are jQuery features, and do not comply with the

specification for Promises

● Make it harder for code to be updated to not use jQuery

● Have a slightly different behaviour in error handling

● Not understood properly by eslint

Why can’t I use done/fail?

● Feature of ES modules

● Can usually co-exist

● But not when transpiled to AMD :(

Named exports? Default exports? Huh?

● Possible since Moodle 3.8

● Follows the same rules as class subdirectories:

○ First subdirectory must be a subsystem or `local`

○ Free reign in Second-level directories

● Really helpful

● ES modules can load them relatively:
import {fetchNotifications} from ‘./local/myfeature/repository’;

Tell me about this subdirectory thing…

Examples

Events

Let’s talk about Events
● Moots

● Events API

● Events 2 API

● Native DOM Events

● YUI3 Events

● jQuery Events

● Native Custom Events

● PubSub

Physical events

Moodle PHP Events

Synthetic Javascript Events

Native Javascript Events

Not really Events

Moodle Moots
● A very popular kind of event
● Lots of networking opportunities
● Not relevant to this discussion
● Good food
● Good wifi

Terminology: Bubbles
Most Events bubble
up from child DOM
Elements to their
parent

Terminology: Delegation
Listen to an event on
a parent element.

If you have multiple
elements you can
listen once for all
click elements and
filter.

Important for
performance

Terminology: Cancelable
Some events can be cancelled

event.cancelable (bool)

Cancel by calling event.preventDefault()

event.defaultPrevented (bool) current state

Once cancelled, cannot be uncancelled

Native DOM Events
Things like:
● click
● mousemove
● mouseover
● mousedown/mouseup
● keydown/keyup/key

● Not all events are cancellable

● Cancellable events prevent the

default behaviour

● Most bubble and can be

delegated

● Name must be a string
● Configurable to support:

○ Bubbling
○ Cancellable
○ Extra args

● Can be fired on any NodeElement
● Available in all supported browsers

Native CustomEvent

Native
CustomEvent

YUI3 Custom Events
Y.on(‘eventname’, eventHandler);
Y.fire(‘eventname’, {some: ‘data’});

Y.Global.on(‘eventname’, eventHandler);
Y.Global.fire(‘eventname’, {some: ‘data’})

Y.one(‘.foo’).on(‘eventname’, eventHandler);
Y.delegate(‘eventname’, eventHandler, ‘.foo’);

// Listen on node
$(‘a’).on(‘click’, console.log);

// Delegated
$(‘document’).on(‘click’, ‘a’, console.log);

jQuery Events

jQuery Custom Events
// Custom events
$(‘document’).on(‘someEvent’, (e, extraArgs) => {
 console.log(e.detail); // undefined
 console.log(extraArgs); // {extra: ‘arguments’}
});

$(‘a’).trigger(‘someEvent’, {extra: ‘arguments’});

jQuery Custom Events
// Custom events
$(‘document’).on(‘someEvent’, (e, extraArgs) => {
 console.log(e.detail); // {extra: ‘arguments’}
 console.log(extraArgs); // undefined
});

$(‘a’)[0].dispatchEvent(new CustomEvent(‘someEvent’, {
 bubbles: true,
 detail: {extra: ‘arguments’},
});

jQuery vs Native events

More Moodle events
● We have core/event AMD module

○ Currently triggers a mixture of jQuery and YUI events
○ Breaks single-component principle
○ Heavily centralised
○ Hard-tied to jQuery

● We also have core/pubsub AMD module:
○ Overly simplistic
○ Centralised but does not break single-component

principle
○ Works purely on knowing what events exist

Enter MDL-70990
● Deprecates all core uses of Custom YUI events
● Starts to deprecate core uses of Custom jQuery events
● Deprecates core/event module usage
● De-centralises
● Uses Native CustomEvent configured to bubble
● Includes core/event_dispatcher AMD module helper
● Encourages documentation of available event types

● Create an your_component/events module centrally in
your component

● Create an eventTypes object to map event names
● Create notify functions in your events module
● Use native (or jQuery) event listeners

Going forward

What it looks like

● HTML on[event] attributes?
● NodeElement.on[event] JS attributes?

What about..?

Don’t!!!

● Technically nothing wrong with it
● But it is yet another way to do the same thing
● And very limited in features
● Not widely used in core
● Ideally migrate to new model proposed here

○ [component]/events module
○ Notify functions
○ Documented event types

● Need to consider how to advise plugins

What about the core/pubsub module..?

● MDL-70990 - Event Dispatcher pattern integrated to master

● MDL-71113 - Build functioning JSDoc

● MDL-69918 - Rewrite Form Change Checker

● MDL-70830 - Rewrite Short Forms

● MDL-71867 - Update custom_event_interaction

● MDL-71868 - Update pubsub

Issue numbers and more

Copyright 2021 © Moodle Pty Ltd - CC BY SA - support@moodle.com

