
Your custom
image here

Moodle Caching at Scale

A presentation with many key values and
lots in store. Content might be slightly hit
and miss. Apologies for any stale content.

Brendan Heywood

Is it only about speed?
● Affordability
● Service Stability / Availability
● Higher Scalability
● More predictability

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://en.wikipedia.org/wiki/Long-tail_traffic

https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/Long-tail_traffic

Case study: MDL-68481
● mod/folder/download_folder.php
● zips many files every single time
● Can we improve it using a “cache” of sorts?
● Ad hoc task to pre-build the zip?

https://tracker.moodle.org/browse/MDL-68481

https://tracker.moodle.org/browse/MDL-68533

https://tracker.moodle.org/browse/MDL-68481
https://tracker.moodle.org/browse/MDL-68533

But can we do better?
● Lots of CPU compressing already compressed files like videos

and images. Just don’t compress them

O(n logn) → O(n)

● TTFB latency waiting for file to be written before sending to
the browser. Instead stream to the browser

O(n) → O(1)

Takeaway #1
● Caching should always be done last, and if still needed
● Eg caching large images vs resizing them (and then caching them)
● Profile with Tideways and focus on bottlenecks
● Always optimize the underlying process first

– PHP loops into SQL
– SQL properly indexed

● You get what you measure, so be careful what you measure
● Narrow optimization causes regressions
● The best optimizations are usually algorithm or data model changes

One of the biggest traps for
smart engineers is optimizing
a thing which shouldn’t exist.

- Elon Musk

https://www.youtube.com/watch?v=cIQ36Kt7UVg 3:00 – 5:30

https://www.youtube.com/watch?v=cIQ36Kt7UVg

https://en.wikipedia.org/wiki/Cache_hierarchy

https://en.wikipedia.org/wiki/Cache_hierarchy

Various caching layers
● Browser cache
● Browser local storage
● CDN / varnish
● Static cache
● memory on local APCu

● local file cache
● global cache
● shared file cache
● Database
● remote origin / API

Static caches
 'string' => array(
 'mode' => cache_store::MODE_APPLICATION,
 'staticacceleration' => true,
 'staticaccelerationsize' => 30,
),

● Just like a static var but safer with deletes / purges

● In memory cache for a single request

● Use it for repeated requests, and when total memory is low

● Usually the total number of unique cache keys is low

● https://docs.moodle.org/dev/Cache_API#Cache_modifiers

https://docs.moodle.org/dev/Cache_API#Cache_modifiers

Memory cache APCu
● Configured as a cache store type in MUC
● Relatively small, never let it fill up
● Perfect for strings, databasemeta and other caches with a very high

hit rate but small items
● Only good for localizable caches

https://github.com/moodleuulm/moodle-tool_apcu

https://docs.moodle.org/38/en/APC_user_cache_(APCu)

https://github.com/moodleuulm/moodle-tool_apcu

Local file caches
 'string' => array(
 'mode' => cache_store::MODE_APPLICATION,
 'canuselocalstore' => true,
),

● Use for items which are not fast moving
● Ideally always stack them a second shared cache store

 https://tracker.moodle.org/browse/MDL-68945

https://tracker.moodle.org/browse/MDL-68945

Elasticity
Slashdot effect / Covid effect

How to localize a cache
● You must have multiple keys for each version
● Structure the keys to be unique either based on time, or

deterministic based on all the inputs
● Old unused keys eventually reclaimed via TTL, LRU, or

periodic purge
● Store the current version somewhere shared: $CFG, DB or

another cache

Localised key examples
● Timestamps are ok if slow enough to not clash

‘coursemodinfo’ uses the increment_revision_number() helper
https://github.com/moodle/moodle/blob/master/lib/modinfolib.php#L2380-
L2383

● Reuse existing version numbers
‘htmlpurifier’ uses moodle build version and all params as part of the key:
https://github.com/moodle/moodle/blob/master/lib/weblib.php#L1785-L181
0

● Content hashes work well and never clash, eg like File API internals, and git
commit hashes and git branch references

https://github.com/moodle/moodle/blob/master/lib/modinfolib.php#L2380-L2383
https://github.com/moodle/moodle/blob/master/lib/modinfolib.php#L2380-L2383
https://github.com/moodle/moodle/blob/master/lib/weblib.php#L1785-L1810
https://github.com/moodle/moodle/blob/master/lib/weblib.php#L1785-L1810

Stampede!
● https://en.wikipedia.org/wiki/Cache_stampede
● Mitigations and workarounds

– Primary / secondary caches
https://tracker.moodle.org/browse/MDL-67020

– Request coallescing / Locking
https://github.com/moodle/moodle/blob/master/lib/modinfolib.php#L453-L462
https://tracker.moodle.org/browse/MDL-61305

● Beware of cron
● Cache purges === DOS attack
● Preventions

– Cache rewarming

https://en.wikipedia.org/wiki/Cache_stampede
https://tracker.moodle.org/browse/MDL-67020
https://github.com/moodle/moodle/blob/master/lib/modinfolib.php#L453-L462
https://tracker.moodle.org/browse/MDL-61305

Rewarming
● If possibly write the new value in MUC before

you update the local reference
● Applies to both localized and non local caches
● For big slow moving and expensive caches, and

where eventual consistency is OK then defer to
an adhoc task

General dev guidelines
● Only set caches in a single place

https://en.wikipedia.org/wiki/Single-responsibility_principle
● Less bad to invalidate in many places, but better to rebuild instead
● So completely encapsulate all cache gets / sets in your own class
● The outside world should be unaware of the caching
● Cache datasources

– A nice pattern for simple caches
https://docs.moodle.org/dev/Cache_API#Specifying_a_data_source

– Don’t have a convenient ‘refresh’ method
– Difficult to use with localized caches

https://tracker.moodle.org/browse/MDL-68456

https://en.wikipedia.org/wiki/Single-responsibility_principle
https://docs.moodle.org/dev/Cache_API#Specifying_a_data_source
https://tracker.moodle.org/browse/MDL-68456

Automating MUC config
● Setting up MUC is a pain (worse if you have hundreds of sites)

● datadir/muc/config.php needs to be retired

● We want a way to completely overrride and automate the entire cache
management
https://tracker.moodle.org/browse/MDL-41492

● A new plugin which handles this via Cache rulesets
https://github.com/catalyst/moodle-tool_forcedcache
– eg ‘Caching config as code’
– It will ship with some standard rulesets ready for prod use

https://tracker.moodle.org/browse/MDL-41492
https://github.com/catalyst/moodle-tool_forcedcache

Caching

https://xkcd.com/1854/

https://xkcd.com/1854/

*

* I may answer with a cached response

Image credits 1/2
● Computer chips

https://www.publicdomainpictures.net/en/view-image.php?image=18192

● Game: Settlers of Catan
https://www.catan.com/game/catan
https://www.flickr.com/photos/bods/6120445526

● Movie: Speed
https://www.imdb.com/title/tt0111257/

● Everyday Astronaut interview with Elon Musk
https://www.youtube.com/everydayastronaut

● Movie: Shrek
https://www.imdb.com/title/tt0126029/

https://www.publicdomainpictures.net/en/view-image.php?image=18192
https://www.catan.com/game/catan
https://www.flickr.com/photos/bods/6120445526
https://www.imdb.com/title/tt0111257/
https://www.youtube.com/everydayastronaut
https://www.imdb.com/title/tt0126029/

Image credits 2/2
● CPU Memory levels

https://www.hardwaretimes.com/what-is-a-processor-register-types-of-cpu-regi
sters-and-functions-explained/

● Code Tee Shirt
https://www.codetee.com/products/2-hard-things-in-computer-science

● Movie: The Lion King
https://www.imdb.com/title/tt0110357/

● Reheating Pizza
https://spoonuniversity.com/how-to/how-to-reheat-pizza-in-the-microwave

● Reddit Ask Me Anything
https://www.reddit.com/

https://www.hardwaretimes.com/what-is-a-processor-register-types-of-cpu-registers-and-functions-explained/
https://www.hardwaretimes.com/what-is-a-processor-register-types-of-cpu-registers-and-functions-explained/
https://www.codetee.com/products/2-hard-things-in-computer-science
https://www.imdb.com/title/tt0110357/
https://spoonuniversity.com/how-to/how-to-reheat-pizza-in-the-microwave
https://www.reddit.com/

	Moodle Caching at Scale
	Caching is trading resources
	It's all about SPEED!
	Is it only about speed?
	Case: folder download
	Optimize first
	Caching is NOT optimizing
	Optiming things which shouldn't exist
	Caches are like onions
	Caching layers of a CPU
	Cache layers in Moodle
	Static cache
	Local memory cache
	Local file cache
	MUC store configuration
	MUC store mappings
	Cache footer when cold
	Cache footer when warm
	Elasticity and the Covid Effect
	Two hard problems in CompSco
	How to localize a cache
	Localised key strategies
	Stampede!
	What are Stampedes
	Rewarming
	Rewarming MUC
	General dev guideines
	Automating MUC config
	Obligatory xkcd
	Ask Me Anything
	Credits 1
	Credits 2

