# MediaWiki TeX test

This should look like some maths:

${\displaystyle \int _{-\infty }^{\infty }\psi ^{-x^{tim}}\,dx={\sqrt {hunt^{4}}}}$

Heavy test:

## Functions, symbols, special characters

### Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
${\displaystyle {\acute {a}}{\grave {a}}{\hat {a}}{\tilde {a}}{\breve {a}}\,\!}$
\check{a} \bar{a} \ddot{a} \dot{a}
${\displaystyle {\check {a}}{\bar {a}}{\ddot {a}}{\dot {a}}\!}$

### Standard functions

\sin a \cos b \tan c
${\displaystyle \sin a\cos b\tan c\!}$
\sec d \csc e \cot f
${\displaystyle \sec d\csc e\cot f\,\!}$
\arcsin h \arccos i \arctan j
${\displaystyle \arcsin h\arccos i\arctan j\,\!}$
\sinh k \cosh l \tanh m \coth n\!
${\displaystyle \sinh k\cosh l\tanh m\coth n\!}$
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!
${\displaystyle \operatorname {sh} \,o\,\operatorname {ch} \,p\,\operatorname {th} \,q\!}$
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t
${\displaystyle \operatorname {arsinh} \,r\,\operatorname {arcosh} \,s\,\operatorname {artanh} \,t\,\!}$
\lim u \limsup v \liminf w \min x \max y\!
${\displaystyle \lim u\limsup v\liminf w\min x\max y\!}$
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!
${\displaystyle \inf z\sup a\exp b\ln c\lg d\log e\log _{10}f\ker g\!}$
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
${\displaystyle \deg h\gcd i\Pr j\det k\hom l\arg m\dim n\!}$

### Modular arithmetic

s_k \equiv 0 \pmod{m}
${\displaystyle s_{k}\equiv 0{\pmod {m}}\,\!}$
a\,\bmod\,b
${\displaystyle a\,{\bmod {\,}}b\,\!}$

### Derivatives

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
${\displaystyle \nabla \,\partial x\,dx\,{\dot {x}}\,{\ddot {y}}\,dy/dx\,{\frac {dy}{dx}}\,{\frac {\partial ^{2}y}{\partial x_{1}\,\partial x_{2}}}}$

### Sets

\forall \exists \empty \emptyset \varnothing
${\displaystyle \forall \exists \emptyset \emptyset \varnothing \,\!}$
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
${\displaystyle \in \ni \not \in \notin \subset \subseteq \supset \supseteq \,\!}$
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
${\displaystyle \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \,\!}$
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
${\displaystyle \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \,\!}$

### Operators

+ \oplus \bigoplus \pm \mp -
${\displaystyle +\oplus \bigoplus \pm \mp -\,\!}$
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
${\displaystyle \times \otimes \bigotimes \cdot \circ \bullet \bigodot \,\!}$
\star * / \div \frac{1}{2}
${\displaystyle \star */\div {\frac {1}{2}}\,\!}$

### Logic

\land (or \and) \wedge \bigwedge \bar{q} \to p
${\displaystyle \land \wedge \bigwedge {\bar {q}}\to p\,\!}$
\lor \vee \bigvee \lnot \neg q \And
${\displaystyle \lor \vee \bigvee \lnot \neg q\And \,\!}$

### Root

\sqrt{2} \sqrt[n]{x}
${\displaystyle {\sqrt {2}}{\sqrt[{n}]{x}}\,\!}$

### Relations

\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}
${\displaystyle \sim \approx \simeq \cong {\dot {=}}{\overset {\underset {\mathrm {def} }{}}{=}}\,\!}$
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
${\displaystyle \leq <\ll \gg \geq >\equiv \not \equiv \neq {\mbox{or}}\neq \propto \,\!}$

### Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
${\displaystyle \Diamond \,\Box \,\triangle \,\angle \perp \,\mid \;\nmid \,\|45^{\circ }\,\!}$

### Arrows

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
${\displaystyle \leftarrow \rightarrow \nleftarrow \not \to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!}$
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
${\displaystyle \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!}$
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow
${\displaystyle \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!}$
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
${\displaystyle \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!}$
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
${\displaystyle \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!}$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
${\displaystyle \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!}$
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
${\displaystyle \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!}$

### Special

\And \eth \S \P \% \dagger \ddagger \ldots \cdots
${\displaystyle \And \eth \S \P \%\dagger \ddagger \ldots \cdots \,\!}$
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
${\displaystyle \smile \frown \wr \triangleleft \triangleright \infty \bot \top \,\!}$
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
${\displaystyle \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \,\!}$
\ell \mho \Finv \Re \Im \wp \complement
${\displaystyle \ell \mho \Finv \Re \Im \wp \complement \,\!}$
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
${\displaystyle \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \,\!}$

### Unsorted (new stuff)

 \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
${\displaystyle \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }$
 \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
${\displaystyle \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge \!}$
 \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
${\displaystyle \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }$
 \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
${\displaystyle \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }$
 \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
${\displaystyle \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }$
 \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
${\displaystyle \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }$
 \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
${\displaystyle \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot }$
 \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
${\displaystyle \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }$
 \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
${\displaystyle \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork }$
 \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
${\displaystyle \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }$
 \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
${\displaystyle \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }$
 \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
${\displaystyle \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }$
\subsetneq
${\displaystyle \subsetneq }$
 \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
${\displaystyle \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }$
 \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
${\displaystyle \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }$
 \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
${\displaystyle \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }$
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
${\displaystyle \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus \,\!}$
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
${\displaystyle \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq \,\!}$
\dashv \asymp \doteq \parallel
${\displaystyle \dashv \asymp \doteq \parallel \,\!}$
\ulcorner \urcorner \llcorner \lrcorner
${\displaystyle \ulcorner \urcorner \llcorner \lrcorner }$

## Larger Expressions

### Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript
a^2
${\displaystyle a^{2}}$ ${\displaystyle a^{2}\,\!}$
Subscript
a_2
${\displaystyle a_{2}}$ ${\displaystyle a_{2}\,\!}$
Grouping
a^{2+2}
${\displaystyle a^{2+2}}$ ${\displaystyle a^{2+2}\,\!}$
a_{i,j}
${\displaystyle a_{i,j}}$ ${\displaystyle a_{i,j}\,\!}$
Combining sub & super without and with horizontal separation
x_2^3
${\displaystyle x_{2}^{3}}$ ${\displaystyle x_{2}^{3}\,\!}$
{x_2}^3
${\displaystyle {x_{2}}^{3}}$ ${\displaystyle {x_{2}}^{3}\,\!}$
Super super
10^{10^{ \,\!{8} }
${\displaystyle 10^{10^{\,\!8}}}$
Super super
10^{10^{ \overset{8}{} }}
${\displaystyle 10^{10^{\overset {8}{}}}}$
Super super (wrong in HTML in some browsers)
10^{10^8}
${\displaystyle 10^{10^{8}}}$
Preceding and/or Additional sub & super
\sideset{_1^2}{_3^4}\prod_a^b
${\displaystyle \sideset {_{1}^{2}}{_{3}^{4}}\prod _{a}^{b}}$
{}_1^2\!\Omega_3^4
${\displaystyle {}_{1}^{2}\!\Omega _{3}^{4}}$
Stacking
\overset{\alpha}{\omega}
${\displaystyle {\overset {\alpha }{\omega }}}$
\underset{\alpha}{\omega}
${\displaystyle {\underset {\alpha }{\omega }}}$
\overset{\alpha}{\underset{\gamma}{\omega}}
${\displaystyle {\overset {\alpha }{\underset {\gamma }{\omega }}}}$
\stackrel{\alpha}{\omega}
${\displaystyle {\stackrel {\alpha }{\omega }}}$
Derivative (forced PNG)
x', y'', f', f''\!
${\displaystyle x',y'',f',f''\!}$
Derivative (f in italics may overlap primes in HTML)
x', y'', f', f''
${\displaystyle x',y'',f',f''}$ ${\displaystyle x',y'',f',f''\!}$
Derivative (wrong in HTML)
x^\prime, y^{\prime\prime}
${\displaystyle x^{\prime },y^{\prime \prime }}$ ${\displaystyle x^{\prime },y^{\prime \prime }\,\!}$
Derivative (wrong in PNG)
x\prime, y\prime\prime
${\displaystyle x\prime ,y\prime \prime }$ ${\displaystyle x\prime ,y\prime \prime \,\!}$
Derivative dots
\dot{x}, \ddot{x}
${\displaystyle {\dot {x}},{\ddot {x}}}$
Underlines, overlines, vectors
\hat a \ \bar b \ \vec c
${\displaystyle {\hat {a}}\ {\bar {b}}\ {\vec {c}}}$
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
${\displaystyle {\overrightarrow {ab}}\ {\overleftarrow {cd}}\ {\widehat {def}}}$
\overline{g h i} \ \underline{j k l}
${\displaystyle {\overline {ghi}}\ {\underline {jkl}}}$
Arrows
 A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
${\displaystyle A{\xleftarrow {n+\mu -1}}B{\xrightarrow[{T}]{n\pm i-1}}C}$
Overbraces
\overbrace{ 1+2+\cdots+100 }^{5050}
${\displaystyle \overbrace {1+2+\cdots +100} ^{5050}}$
Underbraces
\underbrace{ a+b+\cdots+z }_{26}
${\displaystyle \underbrace {a+b+\cdots +z} _{26}}$
Sum
\sum_{k=1}^N k^2
${\displaystyle \sum _{k=1}^{N}k^{2}}$
Sum (force
\textstyle
)
\textstyle \sum_{k=1}^N k^2
${\displaystyle \textstyle \sum _{k=1}^{N}k^{2}}$
Product
\prod_{i=1}^N x_i
${\displaystyle \prod _{i=1}^{N}x_{i}}$
Product (force
\textstyle
)
\textstyle \prod_{i=1}^N x_i
${\displaystyle \textstyle \prod _{i=1}^{N}x_{i}}$
Coproduct
\coprod_{i=1}^N x_i
${\displaystyle \coprod _{i=1}^{N}x_{i}}$
Coproduct (force
\textstyle
)
\textstyle \coprod_{i=1}^N x_i
${\displaystyle \textstyle \coprod _{i=1}^{N}x_{i}}$
Limit
\lim_{n \to \infty}x_n
${\displaystyle \lim _{n\to \infty }x_{n}}$
Limit (force
\textstyle
)
\textstyle \lim_{n \to \infty}x_n
${\displaystyle \textstyle \lim _{n\to \infty }x_{n}}$
Integral
\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx
${\displaystyle \int \limits _{1}^{3}{\frac {e^{3}/x}{x^{2}}}\,dx}$
Integral (alternate limits style)
\int_{1}^{3}\frac{e^3/x}{x^2}\, dx
${\displaystyle \int _{1}^{3}{\frac {e^{3}/x}{x^{2}}}\,dx}$
Integral (force
\textstyle
)
\textstyle \int\limits_{-N}^{N} e^x\, dx
${\displaystyle \textstyle \int \limits _{-N}^{N}e^{x}\,dx}$
Integral (force
\textstyle
, alternate limits style)
\textstyle \int_{-N}^{N} e^x\, dx
${\displaystyle \textstyle \int _{-N}^{N}e^{x}\,dx}$
Double integral
\iint\limits_D \, dx\,dy
${\displaystyle \iint \limits _{D}\,dx\,dy}$
Triple integral
\iiint\limits_E \, dx\,dy\,dz
${\displaystyle \iiint \limits _{E}\,dx\,dy\,dz}$
\iiiint\limits_F \, dx\,dy\,dz\,dt
${\displaystyle \iiiint \limits _{F}\,dx\,dy\,dz\,dt}$
Line or path integral
\int_C x^3\, dx + 4y^2\, dy
${\displaystyle \int _{C}x^{3}\,dx+4y^{2}\,dy}$
Closed line or path integral
\oint_C x^3\, dx + 4y^2\, dy
${\displaystyle \oint _{C}x^{3}\,dx+4y^{2}\,dy}$
Intersections
\bigcap_1^n p
${\displaystyle \bigcap _{1}^{n}p}$
Unions
\bigcup_1^k p
${\displaystyle \bigcup _{1}^{k}p}$

### Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions
\frac{2}{4}=0.5
${\displaystyle {\frac {2}{4}}=0.5}$
Small Fractions
\tfrac{2}{4} = 0.5
${\displaystyle {\tfrac {2}{4}}=0.5}$
Large (normal) Fractions
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
${\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}$
Large (nested) Fractions
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
${\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}$
Binomial coefficients
\binom{n}{k}
${\displaystyle {\binom {n}{k}}}$
Small Binomial coefficients
\tbinom{n}{k}
${\displaystyle {\tbinom {n}{k}}}$
Large (normal) Binomial coefficients
\dbinom{n}{k}
${\displaystyle {\dbinom {n}{k}}}$
Matrices
\begin{matrix}
x & y \\
z & v
\end{matrix}
${\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}$
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
${\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
${\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}$
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}
${\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
${\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
${\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}$
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)

${\displaystyle {\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}}$
Case distinctions
f(n) =
\begin{cases}
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
${\displaystyle f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\\3n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}}$
Multiline equations
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}

{\displaystyle {\begin{aligned}f(x)&=(a+b)^{2}\\&=a^{2}+2ab+b^{2}\\\end{aligned}}}
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat}

{\displaystyle {\begin{alignedat}{2}f(x)&=(a-b)^{2}\\&=a^{2}-2ab+b^{2}\\\end{alignedat}}}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
${\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}$
Multiline equations (more)
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
${\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}$
Breaking up a long expression so that it wraps when necessary, at the expense of destroying correct spacing

$f(x) \,\!$
$= \sum_{n=0}^\infty a_n x^n$
$= a_0+a_1x+a_2x^2+\cdots$



${\displaystyle f(x)\,\!}$${\displaystyle =\sum _{n=0}^{\infty }a_{n}x^{n}}$${\displaystyle =a_{0}+a_{1}x+a_{2}x^{2}+\cdots }$

Simultaneous equations
\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
${\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}}$
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

${\displaystyle {\begin{array}{|c|c||c|}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\\\end{array}}}$

### Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
( \frac{1}{2} )
${\displaystyle ({\frac {1}{2}})}$
Good
\left ( \frac{1}{2} \right )
${\displaystyle \left({\frac {1}{2}}\right)}$

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses
\left ( \frac{a}{b} \right )
${\displaystyle \left({\frac {a}{b}}\right)}$
Brackets
\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
${\displaystyle \left[{\frac {a}{b}}\right]\quad \left\lbrack {\frac {a}{b}}\right\rbrack }$
Braces
\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
${\displaystyle \left\{{\frac {a}{b}}\right\}\quad \left\lbrace {\frac {a}{b}}\right\rbrace }$
Angle brackets
\left \langle \frac{a}{b} \right \rangle
${\displaystyle \left\langle {\frac {a}{b}}\right\rangle }$
Bars and double bars
\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
${\displaystyle \left|{\frac {a}{b}}\right\vert \left\Vert {\frac {c}{d}}\right\|}$
Floor and ceiling functions:
\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
${\displaystyle \left\lfloor {\frac {a}{b}}\right\rfloor \left\lceil {\frac {c}{d}}\right\rceil }$
Slashes and backslashes
\left / \frac{a}{b} \right \backslash
${\displaystyle \left/{\frac {a}{b}}\right\backslash }$
Up, down and up-down arrows
\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
${\displaystyle \left\uparrow {\frac {a}{b}}\right\downarrow \quad \left\Uparrow {\frac {a}{b}}\right\Downarrow \quad \left\updownarrow {\frac {a}{b}}\right\Updownarrow }$
Delimiters can be mixed,
as long as \left and \right match
\left [ 0,1 \right )

\left \langle \psi \right |
${\displaystyle \left[0,1\right)}$
${\displaystyle \left\langle \psi \right|}$
Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X
${\displaystyle \left.{\frac {A}{B}}\right\}\to X}$
Size of the delimiters
\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/<code>
| $\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]$
|-
| <code>\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
${\displaystyle {\big \{}{\Big \{}{\bigg \{}{\Bigg \{}\dots {\Bigg \rangle }{\bigg \rangle }{\Big \rangle }{\big \rangle }}$
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
${\displaystyle {\big \|}{\Big \|}{\bigg \|}{\Bigg \|}\dots {\Bigg |}{\bigg |}{\Big |}{\big |}}$
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
${\displaystyle {\big \lfloor }{\Big \lfloor }{\bigg \lfloor }{\Bigg \lfloor }\dots {\Bigg \rceil }{\bigg \rceil }{\Big \rceil }{\big \rceil }}$
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
${\displaystyle {\big \uparrow }{\Big \uparrow }{\bigg \uparrow }{\Bigg \uparrow }\dots {\Bigg \Downarrow }{\bigg \Downarrow }{\Big \Downarrow }{\big \Downarrow }}$
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
${\displaystyle {\big \updownarrow }{\Big \updownarrow }{\bigg \updownarrow }{\Bigg \updownarrow }\dots {\Bigg \Updownarrow }{\bigg \Updownarrow }{\Big \Updownarrow }{\big \Updownarrow }}$
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
${\displaystyle {\big /}{\Big /}{\bigg /}{\Bigg /}\dots {\Bigg \backslash }{\bigg \backslash }{\Big \backslash }{\big \backslash }}$

## Alphabets and typefaces

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
${\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \,\!}$
\Eta \Theta \Iota \Kappa \Lambda \Mu
${\displaystyle \mathrm {H} \Theta \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \,\!}$
\Nu \Xi \Pi \Rho \Sigma \Tau
${\displaystyle \mathrm {N} \Xi \Pi \mathrm {P} \Sigma \mathrm {T} \,\!}$
\Upsilon \Phi \Chi \Psi \Omega
${\displaystyle \Upsilon \Phi \mathrm {X} \Psi \Omega \,\!}$
\alpha \beta \gamma \delta \epsilon \zeta
${\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \,\!}$
\eta \theta \iota \kappa \lambda \mu
${\displaystyle \eta \theta \iota \kappa \lambda \mu \,\!}$
\nu \xi \pi \rho \sigma \tau
${\displaystyle \nu \xi \pi \rho \sigma \tau \,\!}$
\upsilon \phi \chi \psi \omega
${\displaystyle \upsilon \phi \chi \psi \omega \,\!}$
\varepsilon \digamma \vartheta \varkappa
${\displaystyle \varepsilon \digamma \vartheta \varkappa \,\!}$
\varpi \varrho \varsigma \varphi
${\displaystyle \varpi \varrho \varsigma \varphi \,\!}$
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
${\displaystyle \mathbb {A} \mathbb {B} \mathbb {C} \mathbb {D} \mathbb {E} \mathbb {F} \mathbb {G} \,\!}$
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
${\displaystyle \mathbb {H} \mathbb {I} \mathbb {J} \mathbb {K} \mathbb {L} \mathbb {M} \,\!}$
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
${\displaystyle \mathbb {N} \mathbb {O} \mathbb {P} \mathbb {Q} \mathbb {R} \mathbb {S} \mathbb {T} \,\!}$
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
${\displaystyle \mathbb {U} \mathbb {V} \mathbb {W} \mathbb {X} \mathbb {Y} \mathbb {Z} \,\!}$
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
${\displaystyle \mathbf {A} \mathbf {B} \mathbf {C} \mathbf {D} \mathbf {E} \mathbf {F} \mathbf {G} \,\!}$
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
${\displaystyle \mathbf {H} \mathbf {I} \mathbf {J} \mathbf {K} \mathbf {L} \mathbf {M} \,\!}$
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
${\displaystyle \mathbf {N} \mathbf {O} \mathbf {P} \mathbf {Q} \mathbf {R} \mathbf {S} \mathbf {T} \,\!}$
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
${\displaystyle \mathbf {U} \mathbf {V} \mathbf {W} \mathbf {X} \mathbf {Y} \mathbf {Z} \,\!}$
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
${\displaystyle \mathbf {a} \mathbf {b} \mathbf {c} \mathbf {d} \mathbf {e} \mathbf {f} \mathbf {g} \,\!}$
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
${\displaystyle \mathbf {h} \mathbf {i} \mathbf {j} \mathbf {k} \mathbf {l} \mathbf {m} \,\!}$
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
${\displaystyle \mathbf {n} \mathbf {o} \mathbf {p} \mathbf {q} \mathbf {r} \mathbf {s} \mathbf {t} \,\!}$
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
${\displaystyle \mathbf {u} \mathbf {v} \mathbf {w} \mathbf {x} \mathbf {y} \mathbf {z} \,\!}$
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
${\displaystyle \mathbf {0} \mathbf {1} \mathbf {2} \mathbf {3} \mathbf {4} \,\!}$
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
${\displaystyle \mathbf {5} \mathbf {6} \mathbf {7} \mathbf {8} \mathbf {9} \,\!}$
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
${\displaystyle {\boldsymbol {\mathrm {A} }}{\boldsymbol {\mathrm {B} }}{\boldsymbol {\Gamma }}{\boldsymbol {\Delta }}{\boldsymbol {\mathrm {E} }}{\boldsymbol {\mathrm {Z} }}\,\!}$
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
${\displaystyle {\boldsymbol {\mathrm {H} }}{\boldsymbol {\Theta }}{\boldsymbol {\mathrm {I} }}{\boldsymbol {\mathrm {K} }}{\boldsymbol {\Lambda }}{\boldsymbol {\mathrm {M} }}\,\!}$
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
${\displaystyle {\boldsymbol {\mathrm {N} }}{\boldsymbol {\Xi }}{\boldsymbol {\Pi }}{\boldsymbol {\mathrm {P} }}{\boldsymbol {\Sigma }}{\boldsymbol {\mathrm {T} }}\,\!}$
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
${\displaystyle {\boldsymbol {\Upsilon }}{\boldsymbol {\Phi }}{\boldsymbol {\mathrm {X} }}{\boldsymbol {\Psi }}{\boldsymbol {\Omega }}\,\!}$
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
${\displaystyle {\boldsymbol {\alpha }}{\boldsymbol {\beta }}{\boldsymbol {\gamma }}{\boldsymbol {\delta }}{\boldsymbol {\epsilon }}{\boldsymbol {\zeta }}\,\!}$
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
${\displaystyle {\boldsymbol {\eta }}{\boldsymbol {\theta }}{\boldsymbol {\iota }}{\boldsymbol {\kappa }}{\boldsymbol {\lambda }}{\boldsymbol {\mu }}\,\!}$
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
${\displaystyle {\boldsymbol {\nu }}{\boldsymbol {\xi }}{\boldsymbol {\pi }}{\boldsymbol {\rho }}{\boldsymbol {\sigma }}{\boldsymbol {\tau }}\,\!}$
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
${\displaystyle {\boldsymbol {\upsilon }}{\boldsymbol {\phi }}{\boldsymbol {\chi }}{\boldsymbol {\psi }}{\boldsymbol {\omega }}\,\!}$
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
${\displaystyle {\boldsymbol {\varepsilon }}{\boldsymbol {\digamma }}{\boldsymbol {\vartheta }}{\boldsymbol {\varkappa }}\,\!}$
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
${\displaystyle {\boldsymbol {\varpi }}{\boldsymbol {\varrho }}{\boldsymbol {\varsigma }}{\boldsymbol {\varphi }}\,\!}$
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
${\displaystyle {\mathit {A}}{\mathit {B}}{\mathit {C}}{\mathit {D}}{\mathit {E}}{\mathit {F}}{\mathit {G}}\,\!}$
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
${\displaystyle {\mathit {H}}{\mathit {I}}{\mathit {J}}{\mathit {K}}{\mathit {L}}{\mathit {M}}\,\!}$
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
${\displaystyle {\mathit {N}}{\mathit {O}}{\mathit {P}}{\mathit {Q}}{\mathit {R}}{\mathit {S}}{\mathit {T}}\,\!}$
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
${\displaystyle {\mathit {U}}{\mathit {V}}{\mathit {W}}{\mathit {X}}{\mathit {Y}}{\mathit {Z}}\,\!}$
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
${\displaystyle {\mathit {a}}{\mathit {b}}{\mathit {c}}{\mathit {d}}{\mathit {e}}{\mathit {f}}{\mathit {g}}\,\!}$
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
${\displaystyle {\mathit {h}}{\mathit {i}}{\mathit {j}}{\mathit {k}}{\mathit {l}}{\mathit {m}}\,\!}$
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
${\displaystyle {\mathit {n}}{\mathit {o}}{\mathit {p}}{\mathit {q}}{\mathit {r}}{\mathit {s}}{\mathit {t}}\,\!}$
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
${\displaystyle {\mathit {u}}{\mathit {v}}{\mathit {w}}{\mathit {x}}{\mathit {y}}{\mathit {z}}\,\!}$
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
${\displaystyle {\mathit {0}}{\mathit {1}}{\mathit {2}}{\mathit {3}}{\mathit {4}}\,\!}$
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
${\displaystyle {\mathit {5}}{\mathit {6}}{\mathit {7}}{\mathit {8}}{\mathit {9}}\,\!}$
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
${\displaystyle \mathrm {A} \mathrm {B} \mathrm {C} \mathrm {D} \mathrm {E} \mathrm {F} \mathrm {G} \,\!}$
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
${\displaystyle \mathrm {H} \mathrm {I} \mathrm {J} \mathrm {K} \mathrm {L} \mathrm {M} \,\!}$
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
${\displaystyle \mathrm {N} \mathrm {O} \mathrm {P} \mathrm {Q} \mathrm {R} \mathrm {S} \mathrm {T} \,\!}$
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
${\displaystyle \mathrm {U} \mathrm {V} \mathrm {W} \mathrm {X} \mathrm {Y} \mathrm {Z} \,\!}$
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
${\displaystyle \mathrm {a} \mathrm {b} \mathrm {c} \mathrm {d} \mathrm {e} \mathrm {f} \mathrm {g} \,\!}$
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
${\displaystyle \mathrm {h} \mathrm {i} \mathrm {j} \mathrm {k} \mathrm {l} \mathrm {m} \,\!}$
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
${\displaystyle \mathrm {n} \mathrm {o} \mathrm {p} \mathrm {q} \mathrm {r} \mathrm {s} \mathrm {t} \,\!}$
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
${\displaystyle \mathrm {u} \mathrm {v} \mathrm {w} \mathrm {x} \mathrm {y} \mathrm {z} \,\!}$
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
${\displaystyle \mathrm {0} \mathrm {1} \mathrm {2} \mathrm {3} \mathrm {4} \,\!}$
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
${\displaystyle \mathrm {5} \mathrm {6} \mathrm {7} \mathrm {8} \mathrm {9} \,\!}$
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
${\displaystyle {\mathfrak {A}}{\mathfrak {B}}{\mathfrak {C}}{\mathfrak {D}}{\mathfrak {E}}{\mathfrak {F}}{\mathfrak {G}}\,\!}$
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
${\displaystyle {\mathfrak {H}}{\mathfrak {I}}{\mathfrak {J}}{\mathfrak {K}}{\mathfrak {L}}{\mathfrak {M}}\,\!}$
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
${\displaystyle {\mathfrak {N}}{\mathfrak {O}}{\mathfrak {P}}{\mathfrak {Q}}{\mathfrak {R}}{\mathfrak {S}}{\mathfrak {T}}\,\!}$
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
${\displaystyle {\mathfrak {U}}{\mathfrak {V}}{\mathfrak {W}}{\mathfrak {X}}{\mathfrak {Y}}{\mathfrak {Z}}\,\!}$
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
${\displaystyle {\mathfrak {a}}{\mathfrak {b}}{\mathfrak {c}}{\mathfrak {d}}{\mathfrak {e}}{\mathfrak {f}}{\mathfrak {g}}\,\!}$
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
${\displaystyle {\mathfrak {h}}{\mathfrak {i}}{\mathfrak {j}}{\mathfrak {k}}{\mathfrak {l}}{\mathfrak {m}}\,\!}$
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
${\displaystyle {\mathfrak {n}}{\mathfrak {o}}{\mathfrak {p}}{\mathfrak {q}}{\mathfrak {r}}{\mathfrak {s}}{\mathfrak {t}}\,\!}$
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
${\displaystyle {\mathfrak {u}}{\mathfrak {v}}{\mathfrak {w}}{\mathfrak {x}}{\mathfrak {y}}{\mathfrak {z}}\,\!}$
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
${\displaystyle {\mathfrak {0}}{\mathfrak {1}}{\mathfrak {2}}{\mathfrak {3}}{\mathfrak {4}}\,\!}$
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
${\displaystyle {\mathfrak {5}}{\mathfrak {6}}{\mathfrak {7}}{\mathfrak {8}}{\mathfrak {9}}\,\!}$
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
${\displaystyle {\mathcal {A}}{\mathcal {B}}{\mathcal {C}}{\mathcal {D}}{\mathcal {E}}{\mathcal {F}}{\mathcal {G}}\,\!}$
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
${\displaystyle {\mathcal {H}}{\mathcal {I}}{\mathcal {J}}{\mathcal {K}}{\mathcal {L}}{\mathcal {M}}\,\!}$
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
${\displaystyle {\mathcal {N}}{\mathcal {O}}{\mathcal {P}}{\mathcal {Q}}{\mathcal {R}}{\mathcal {S}}{\mathcal {T}}\,\!}$
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
${\displaystyle {\mathcal {U}}{\mathcal {V}}{\mathcal {W}}{\mathcal {X}}{\mathcal {Y}}{\mathcal {Z}}\,\!}$
Hebrew
\aleph \beth \gimel \daleth
${\displaystyle \aleph \beth \gimel \daleth \,\!}$
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} ${\displaystyle {\mbox{abc}}}$ ${\displaystyle {\mbox{abc}}\,\!}$
mixed italics (bad) \mbox{if} n \mbox{is even} ${\displaystyle {\mbox{if}}n{\mbox{is even}}}$ ${\displaystyle {\mbox{if}}n{\mbox{is even}}\,\!}$
mixed italics (good) \mbox{if }n\mbox{ is even} ${\displaystyle {\mbox{if }}n{\mbox{ is even}}}$ ${\displaystyle {\mbox{if }}n{\mbox{ is even}}\,\!}$
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} ${\displaystyle {\mbox{if}}~n\ {\mbox{is even}}}$ ${\displaystyle {\mbox{if}}~n\ {\mbox{is even}}\,\!}$

## Color

Equations can use color:

• {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
${\displaystyle {\color {Blue}x^{2}}+{\color {YellowOrange}2x}-{\color {OliveGreen}1}}$
• x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
${\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {\color {Red}b^{2}-4ac}}}{2a}}}$

See here for all named colors supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See.

## Formatting issues

### Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b ${\displaystyle a\qquad b}$
quad space a \quad b ${\displaystyle a\quad b}$
text space a\ b ${\displaystyle a\ b}$
text space without PNG conversion a \mbox{ } b ${\displaystyle a{\mbox{ }}b}$
large space a\;b ${\displaystyle a\;b}$
medium space a\>b [not supported]
small space a\,b ${\displaystyle a\,b}$
no space ab ${\displaystyle ab\,}$
small negative space a\!b ${\displaystyle a\!b}$

### Alignment with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like ${\displaystyle \int _{-N}^{N}e^{x}\,dx}$ should look good.

If you need to align it otherwise, use
<math style="vertical-align:-100%;">...[/itex]
and play with the
vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

### Forced PNG rendering

To force the formula to render as PNG, add
\,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode. You can also use
\,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike
\,
.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} ${\displaystyle a^{c+2}}$
a^{c+2} \, ${\displaystyle a^{c+2}\,}$
a^{\,\!c+2} ${\displaystyle a^{\,\!c+2}}$
a^{b^{c+2}} ${\displaystyle a^{b^{c+2}}}$ (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, ${\displaystyle a^{b^{c+2}}\,}$ (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 ${\displaystyle a^{b^{c+2}}\approx 5}$ (due to "${\displaystyle \approx }$" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} ${\displaystyle a^{b^{\,\!c+2}}}$
\int_{-N}^{N} e^x\, dx ${\displaystyle \int _{-N}^{N}e^{x}\,dx}$

This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

## Examples

${\displaystyle ax^{2}+bx+c=0}$

$ax^2 + bx + c = 0$


### Quadratic Polynomial (Force PNG Rendering)

${\displaystyle ax^{2}+bx+c=0\,\!}$

$ax^2 + bx + c = 0\,\!$


${\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}}$

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$


### Tall Parentheses and Fractions

${\displaystyle 2=\left({\frac {\left(3-x\right)\times 2}{3-x}}\right)}$

$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$

${\displaystyle S_{\text{new}}=S_{\text{old}}-{\frac {\left(5-T\right)^{2}}{2}}}$

$S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}$



### Integrals

${\displaystyle \int _{a}^{x}\!\!\!\int _{a}^{s}f(y)\,dy\,ds=\int _{a}^{x}f(y)(x-y)\,dy}$

$\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$


### Summation

${\displaystyle \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}}$

$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}$


### Differential Equation

${\displaystyle u''+p(x)u'+q(x)u=f(x),\quad x>a}$

$u'' + p(x)u' + q(x)u=f(x),\quad x>a$


### Complex numbers

${\displaystyle |{\bar {z}}|=|z|,|({\bar {z}})^{n}|=|z|^{n},\arg(z^{n})=n\arg(z)}$

$|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)$


### Limits

${\displaystyle \lim _{z\rightarrow z_{0}}f(z)=f(z_{0})}$

$\lim_{z\rightarrow z_0} f(z)=f(z_0)$


### Integral Equation

${\displaystyle \phi _{n}(\kappa )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\kappa R}}{\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,dR}$

$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$


### Example

${\displaystyle \phi _{n}(\kappa )=0.033C_{n}^{2}\kappa ^{-11/3},\quad {\frac {1}{L_{0}}}\ll \kappa \ll {\frac {1}{l_{0}}}}$

$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$


### Continuation and cases

${\displaystyle f(x)={\begin{cases}1&-1\leq x<0\\{\frac {1}{2}}&x=0\\1-x^{2}&{\mbox{otherwise}}\end{cases}}}$

$f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases}$


### Prefixed subscript

${\displaystyle {}_{p}F_{q}(a_{1},\dots ,a_{p};c_{1},\dots ,c_{q};z)=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}\cdots (a_{p})_{n}}{(c_{1})_{n}\cdots (c_{q})_{n}}}{\frac {z^{n}}{n!}}}$

${}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}$


### Fraction and small fraction

${\displaystyle {\frac {a}{b}}}$   ${\displaystyle {\tfrac {a}{b}}}$
$\frac {a}{b}\ \tfrac {a}{b}$


### Unicode vs TeX comparison

 unicode TeX See ⟦ [\![ ${\displaystyle [\![}$ { \{ ${\displaystyle \{}$ ∥ \| ${\displaystyle \|}$ } \} ${\displaystyle \}}$ ℵ \aleph ${\displaystyle \aleph }$ α \alpha ${\displaystyle \alpha }$ ⨿ \amalg ${\displaystyle \amalg }$ ∠ \angle ${\displaystyle \angle }$ ≈ \approx ${\displaystyle \approx }$ ∗ \ast ${\displaystyle \ast }$ ≍ \asymp ${\displaystyle \asymp }$ \ \backslash ${\displaystyle \backslash }$ β \beta ${\displaystyle \beta }$ ⋂ \bigcap ${\displaystyle \bigcap }$ ◯ \bigcirc ${\displaystyle \bigcirc }$ ⋃ \bigcup ${\displaystyle \bigcup }$ ⨀ \bigodot ${\displaystyle \bigodot }$ ⨁ \bigoplus ${\displaystyle \bigoplus }$ ⨂ \bigotimes ${\displaystyle \bigotimes }$ ⨆ \bigsqcup ${\displaystyle \bigsqcup }$ ▽ \bigtriangledown ${\displaystyle \bigtriangledown }$ △ \bigtriangleup ${\displaystyle \bigtriangleup }$ ⨄ \biguplus ${\displaystyle \biguplus }$ ⋀ \bigwedge ${\displaystyle \bigwedge }$ ⋁ \bigvee ${\displaystyle \bigvee }$ ⊥ \bot ${\displaystyle \bot }$ ⋈ \bowtie ${\displaystyle \bowtie }$ □ \Box ${\displaystyle \Box }$ ∙ \bullet ${\displaystyle \bullet }$ ∩ \cap ${\displaystyle \cap }$ ⋅ \cdot ${\displaystyle \cdot }$ ⋯ \cdots ${\displaystyle \cdots }$ χ \chi ${\displaystyle \chi }$ ∘ \circ ${\displaystyle \circ }$ ♣ \clubsuit ${\displaystyle \clubsuit }$ ≅ \cong ${\displaystyle \cong }$ ∐ \coprod ${\displaystyle \coprod }$ ∪ \cup ${\displaystyle \cup }$ † \dagger ${\displaystyle \dagger }$ ⊣ \dashv ${\displaystyle \dashv }$ ‡ \ddagger ${\displaystyle \ddagger }$ ⋱ \ddots ${\displaystyle \ddots }$ δ \delta ${\displaystyle \delta }$ Δ \Delta ${\displaystyle \Delta }$ ◇ \Diamond ${\displaystyle \Diamond }$ ⋄ \diamond ${\displaystyle \diamond }$ ♢ \diamondsuit ${\displaystyle \diamondsuit }$ ÷ \div ${\displaystyle \div }$ ≐ \doteq ${\displaystyle \doteq }$ ↓ \downarrow ${\displaystyle \downarrow }$ ⇓ \Downarrow ${\displaystyle \Downarrow }$ ℓ \ell ${\displaystyle \ell }$ ∅ \emptyset ${\displaystyle \emptyset }$ ϵ \epsilon ${\displaystyle \epsilon }$ ≡ \equiv ${\displaystyle \equiv }$ η \eta ${\displaystyle \eta }$ ∃ \exists ${\displaystyle \exists }$ ♭ \flat ${\displaystyle \flat }$ ∀ \forall ${\displaystyle \forall }$ ⌢ \frown ${\displaystyle \frown }$ γ \gamma ${\displaystyle \gamma }$ Γ \Gamma ${\displaystyle \Gamma }$ ≥ \ge ${\displaystyle \geq }$ ≥ \geq ${\displaystyle \geq }$ ← \gets ${\displaystyle \gets }$ ≫ \gg ${\displaystyle \gg }$ ℏ \hbar ${\displaystyle \hbar }$ ♡ \heartsuit ${\displaystyle \heartsuit }$ ↩ \hookleftarrow ${\displaystyle \hookleftarrow }$ ↪ \hookrightarrow ${\displaystyle \hookrightarrow }$ ℑ \Im ${\displaystyle \Im }$ ı \imath ${\displaystyle \imath }$ ∈ \in ${\displaystyle \in }$ ∞ \infty ${\displaystyle \infty }$ ∫ \int ${\displaystyle \int }$ ι \iota ${\displaystyle \iota }$ j \jmath ${\displaystyle \jmath }$ κ \kappa ${\displaystyle \kappa }$ λ \lambda ${\displaystyle \lambda }$ Λ \Lambda ${\displaystyle \Lambda }$ ∧ \land ${\displaystyle \land }$ ⟨ \langle ${\displaystyle \langle }$ ⟪ \langle\!\langle ${\displaystyle \langle \!\langle }$ { \lbrace ${\displaystyle \lbrace }$ [ \lbrack ${\displaystyle \lbrack }$ ⌈ \lceil ${\displaystyle \lceil }$ ≤ \le ${\displaystyle \leq }$ ⇐ \Leftarrow ${\displaystyle \Leftarrow }$ ← \leftarrow ${\displaystyle \leftarrow }$ ↽ \leftharpoondown ${\displaystyle \leftharpoondown }$ ↼ \leftharpoonup ${\displaystyle \leftharpoonup }$ ↔ \leftrightarrow ${\displaystyle \leftrightarrow }$ ⇔ \Leftrightarrow ${\displaystyle \Leftrightarrow }$ ≤ \leq ${\displaystyle \leq }$ ⌊ \lfloor ${\displaystyle \lfloor }$ ≪ \ll ${\displaystyle \ll }$ ¬ \lnot ${\displaystyle \lnot }$ ⟸ \Longleftarrow ${\displaystyle \Longleftarrow }$ ⟵ \longleftarrow ${\displaystyle \longleftarrow }$ ⟺ \Longleftrightarrow ${\displaystyle \Longleftrightarrow }$ ⟷ \longleftrightarrow ${\displaystyle \longleftrightarrow }$ ⟼ \longmapsto ${\displaystyle \longmapsto }$ ⟹ \Longrightarrow ${\displaystyle \Longrightarrow }$ ⟶ \longrightarrow ${\displaystyle \longrightarrow }$ ∨ \lor ${\displaystyle \lor }$ ↦ \mapsto ${\displaystyle \mapsto }$ ∣ \mid ${\displaystyle \mid }$ ⊨ \models ${\displaystyle \models }$ ∓ \mp ${\displaystyle \mp }$ μ \mu ${\displaystyle \mu }$ ∇ \nabla ${\displaystyle \nabla }$ ♮ \natural ${\displaystyle \natural }$ ≠ \ne ${\displaystyle \neq }$ ↗ \nearrow ${\displaystyle \nearrow }$ ¬ \neg ${\displaystyle \neg }$ ≠ \neq ${\displaystyle \neq }$ ∋ \ni ${\displaystyle \ni }$ ≉ \not\approx ${\displaystyle \not \approx }$ ≭ \not\asymp ${\displaystyle \not \asymp }$ ≇ \not\cong ${\displaystyle \not \cong }$ ≢ \not\equiv ${\displaystyle \not \equiv }$ ≱ \not\geq ${\displaystyle \not \geq }$ ≰ \not\leq ${\displaystyle \not \leq }$ ⊀ \not\prec ${\displaystyle \not \prec }$ ⋠ \not\preceq ${\displaystyle \not \preceq }$ ≁ \not\sim ${\displaystyle \not \sim }$ ≄ \not\simeq ${\displaystyle \not \simeq }$ ⋢ \not\sqsubseteq ${\displaystyle \not \sqsubseteq }$ ⋣ \not\sqsupseteq ${\displaystyle \not \sqsupseteq }$ ⊄ \not\subset ${\displaystyle \not \subset }$ ⊈ \not\subseteq ${\displaystyle \not \subseteq }$ ⊁ \not\succ ${\displaystyle \not \succ }$ ⋡ \not\succeq ${\displaystyle \not \succeq }$ ⊅ \not\supset ${\displaystyle \not \supset }$ ⊉ \not\supseteq ${\displaystyle \not \supseteq }$ ≠ \not= ${\displaystyle \not =}$ ν \nu ${\displaystyle \nu }$ ↖ \nwarrow ${\displaystyle \nwarrow }$ ⊙ \odot ${\displaystyle \odot }$ ∮ \oint ${\displaystyle \oint }$ ω \omega ${\displaystyle \omega }$ Ω \Omega ${\displaystyle \Omega }$ ⊖ \ominus ${\displaystyle \ominus }$ ⊕ \oplus ${\displaystyle \oplus }$ ⊘ \oslash ${\displaystyle \oslash }$ ⊗ \otimes ${\displaystyle \otimes }$ ∥ \parallel ${\displaystyle \parallel }$ ∂ \partial ${\displaystyle \partial }$ ⊥ \perp ${\displaystyle \perp }$ ϕ \phi ${\displaystyle \phi }$ Φ \Phi ${\displaystyle \Phi }$ π \pi ${\displaystyle \pi }$ Π \Pi ${\displaystyle \Pi }$ ± \pm ${\displaystyle \pm }$ ≺ \prec ${\displaystyle \prec }$ ≼ \preceq ${\displaystyle \preceq }$ ′ \prime ${\displaystyle \prime }$ ∏ \prod ${\displaystyle \prod }$ ∝ \propto ${\displaystyle \propto }$ ψ \psi ${\displaystyle \psi }$ Ψ \Psi ${\displaystyle \Psi }$ ⟩ \rangle ${\displaystyle \rangle }$ ⟫ \rangle\!\rangle ${\displaystyle \rangle \!\rangle }$ } \rbrace ${\displaystyle \rbrace }$ ] \rbrack ${\displaystyle \rbrack }$ ⌉ \rceil ${\displaystyle \rceil }$ ℜ \Re ${\displaystyle \Re }$ ⌋ \rfloor ${\displaystyle \rfloor }$ ρ \rho ${\displaystyle \rho }$ → \rightarrow ${\displaystyle \rightarrow }$ ⇒ \Rightarrow ${\displaystyle \Rightarrow }$ ⇁ \rightharpoondown ${\displaystyle \rightharpoondown }$ ⇀ \rightharpoonup ${\displaystyle \rightharpoonup }$ ⇌ \rightleftharpoons ${\displaystyle \rightleftharpoons }$ ↘ \searrow ${\displaystyle \searrow }$ ∖ \setminus ${\displaystyle \setminus }$ ♯ \sharp ${\displaystyle \sharp }$ σ \sigma ${\displaystyle \sigma }$ Σ \Sigma ${\displaystyle \Sigma }$ ∼ \sim ${\displaystyle \sim }$ ≃ \simeq ${\displaystyle \simeq }$ ⌣ \smile ${\displaystyle \smile }$ ♠ \spadesuit ${\displaystyle \spadesuit }$ ⊓ \sqcap ${\displaystyle \sqcap }$ ⊔ \sqcup ${\displaystyle \sqcup }$ ⊏ \sqsubset ${\displaystyle \sqsubset }$ ⊑ \sqsubseteq ${\displaystyle \sqsubseteq }$ ⊐ \sqsupset ${\displaystyle \sqsupset }$ ⊒ \sqsupseteq ${\displaystyle \sqsupseteq }$ ⋆ \star ${\displaystyle \star }$ ⊂ \subset ${\displaystyle \subset }$ ⊆ \subseteq ${\displaystyle \subseteq }$ ≻ \succ ${\displaystyle \succ }$ ≽ \succeq ${\displaystyle \succeq }$ ∑ \sum ${\displaystyle \sum }$ ⊃ \supset ${\displaystyle \supset }$ ⊇ \supseteq ${\displaystyle \supseteq }$ √ \surd ${\displaystyle \surd }$ ↙ \swarrow ${\displaystyle \swarrow }$ τ \tau ${\displaystyle \tau }$ θ \theta ${\displaystyle \theta }$ Θ \Theta ${\displaystyle \Theta }$ × \times ${\displaystyle \times }$ → \to ${\displaystyle \to }$ ⊤ \top ${\displaystyle \top }$ △ \triangle ${\displaystyle \triangle }$ ◁ \triangleleft ${\displaystyle \triangleleft }$ ▷ \triangleright ${\displaystyle \triangleright }$ ↑ \uparrow ${\displaystyle \uparrow }$ ⇑ \Uparrow ${\displaystyle \Uparrow }$ ↕ \updownarrow ${\displaystyle \updownarrow }$ ⇕ \Updownarrow ${\displaystyle \Updownarrow }$ ⊎ \uplus ${\displaystyle \uplus }$ υ \upsilon ${\displaystyle \upsilon }$ Υ \Upsilon ${\displaystyle \Upsilon }$ ε \varepsilon ${\displaystyle \varepsilon }$ φ \varphi ${\displaystyle \varphi }$ ϖ \varpi ${\displaystyle \varpi }$ ϱ \varrho ${\displaystyle \varrho }$ ς \varsigma ${\displaystyle \varsigma }$ ϑ \vartheta ${\displaystyle \vartheta }$ ⊢ \vdash ${\displaystyle \vdash }$ ⋮ \vdots ${\displaystyle \vdots }$ ∧ \wedge ${\displaystyle \wedge }$ ∨ \vee ${\displaystyle \vee }$ ∣ \vert ${\displaystyle \vert }$ ∥ \Vert ${\displaystyle \Vert }$ ℘ \wp ${\displaystyle \wp }$ ≀ \wr ${\displaystyle \wr }$ ξ \xi ${\displaystyle \xi }$ Ξ \Xi ${\displaystyle \Xi }$ ζ \zeta ${\displaystyle \zeta }$ ⟧ ]\!] ${\displaystyle ]\!]}$ ο o ${\displaystyle o}$