# MediaWiki TeX test

This should look like some maths:

$\int_{-\infty}^\infty \psi^{-x^{tim}}\,dx = \sqrt{hunt^4}$

Heavy test:

## Functions, symbols, special characters

### Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
$\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!$
\check{a} \bar{a} \ddot{a} \dot{a}
$\check{a} \bar{a} \ddot{a} \dot{a}\!$

### Standard functions

\sin a \cos b \tan c
$\sin a \cos b \tan c\!$
\sec d \csc e \cot f
$\sec d \csc e \cot f\,\!$
\arcsin h \arccos i \arctan j
$\arcsin h \arccos i \arctan j\,\!$
\sinh k \cosh l \tanh m \coth n\!
$\sinh k \cosh l \tanh m \coth n\!$
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!
$\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!$
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t
$\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!$
\lim u \limsup v \liminf w \min x \max y\!
$\lim u \limsup v \liminf w \min x \max y\!$
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!
$\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!$
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
$\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!$

### Modular arithmetic

s_k \equiv 0 \pmod{m}
$s_k \equiv 0 \pmod{m}\,\!$
a\,\bmod\,b
$a\,\bmod\,b\,\!$

### Derivatives

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
$\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}$

### Sets

\forall \exists \empty \emptyset \varnothing
$\forall \exists \empty \emptyset \varnothing\,\!$
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
$\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!$
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
$\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!$
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
$\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!$

### Operators

+ \oplus \bigoplus \pm \mp -
$+ \oplus \bigoplus \pm \mp - \,\!$
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
$\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!$
\star * / \div \frac{1}{2}
$\star * / \div \frac{1}{2}\,\!$

### Logic

\land (or \and) \wedge \bigwedge \bar{q} \to p
$\land \wedge \bigwedge \bar{q} \to p\,\!$
\lor \vee \bigvee \lnot \neg q \And
$\lor \vee \bigvee \lnot \neg q \And\,\!$

### Root

\sqrt{2} \sqrt[n]{x}
$\sqrt{2} \sqrt[n]{x}\,\!$

### Relations

\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}
$\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!$
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
$\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!$

### Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
$\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!$

### Arrows

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
$\leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!$
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
$\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!$
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow
$\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!$
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
$\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!$
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
$\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
$\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!$
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
$\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!$

### Special

\And \eth \S \P \% \dagger \ddagger \ldots \cdots
$\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!$
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
$\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!$
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
$\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!$
\ell \mho \Finv \Re \Im \wp \complement
$\ell \mho \Finv \Re \Im \wp \complement\,\!$
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
$\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!$

### Unsorted (new stuff)

 \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
$\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown$
 \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
$\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!$
 \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
$\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes$
 \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
$\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant$
 \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
$\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq$
 \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
$\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft$
 \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
$\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot$
 \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
$\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq$
 \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
$\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork$
 \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
$\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq$
 \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
$\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid$
 \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
$\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr$
\subsetneq
$\subsetneq$
 \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
$\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq$
 \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
$\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq$
 \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
$\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq$
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
$\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!$
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
$\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!$
\dashv \asymp \doteq \parallel
$\dashv \asymp \doteq \parallel\,\!$
\ulcorner \urcorner \llcorner \lrcorner
$\ulcorner \urcorner \llcorner \lrcorner$

## Larger Expressions

### Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript
a^2
$a^2$ $a^2 \,\!$
Subscript
a_2
$a_2$ $a_2 \,\!$
Grouping
a^{2+2}
$a^{2+2}$ $a^{2+2}\,\!$
a_{i,j}
$a_{i,j}$ $a_{i,j}\,\!$
Combining sub & super without and with horizontal separation
x_2^3
$x_2^3$ $x_2^3 \,\!$
{x_2}^3
${x_2}^3$ ${x_2}^3 \,\!$
Super super
10^{10^{ \,\!{8} }
$10^{10^{ \,\! 8 } }$
Super super
10^{10^{ \overset{8}{} }}
$10^{10^{ \overset{8}{} }}$
Super super (wrong in HTML in some browsers)
10^{10^8}
$10^{10^8}$
Preceding and/or Additional sub & super
\sideset{_1^2}{_3^4}\prod_a^b
$\sideset{_1^2}{_3^4}\prod_a^b$
{}_1^2\!\Omega_3^4
${}_1^2\!\Omega_3^4$
Stacking
\overset{\alpha}{\omega}
$\overset{\alpha}{\omega}$
\underset{\alpha}{\omega}
$\underset{\alpha}{\omega}$
\overset{\alpha}{\underset{\gamma}{\omega}}
$\overset{\alpha}{\underset{\gamma}{\omega}}$
\stackrel{\alpha}{\omega}
$\stackrel{\alpha}{\omega}$
Derivative (forced PNG)
x', y'', f', f''\!
$x', y'', f', f''\!$
Derivative (f in italics may overlap primes in HTML)
x', y'', f', f''
$x', y'', f', f''$ $x', y'', f', f''\!$
Derivative (wrong in HTML)
x^\prime, y^{\prime\prime}
$x^\prime, y^{\prime\prime}$ $x^\prime, y^{\prime\prime}\,\!$
Derivative (wrong in PNG)
x\prime, y\prime\prime
$x\prime, y\prime\prime$ $x\prime, y\prime\prime\,\!$
Derivative dots
\dot{x}, \ddot{x}
$\dot{x}, \ddot{x}$
Underlines, overlines, vectors
\hat a \ \bar b \ \vec c
$\hat a \ \bar b \ \vec c$
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
$\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}$
\overline{g h i} \ \underline{j k l}
$\overline{g h i} \ \underline{j k l}$
Arrows
 A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
$A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C$
Overbraces
\overbrace{ 1+2+\cdots+100 }^{5050}
$\overbrace{ 1+2+\cdots+100 }^{5050}$
Underbraces
\underbrace{ a+b+\cdots+z }_{26}
$\underbrace{ a+b+\cdots+z }_{26}$
Sum
\sum_{k=1}^N k^2
$\sum_{k=1}^N k^2$
Sum (force
\textstyle
)
\textstyle \sum_{k=1}^N k^2
$\textstyle \sum_{k=1}^N k^2$
Product
\prod_{i=1}^N x_i
$\prod_{i=1}^N x_i$
Product (force
\textstyle
)
\textstyle \prod_{i=1}^N x_i
$\textstyle \prod_{i=1}^N x_i$
Coproduct
\coprod_{i=1}^N x_i
$\coprod_{i=1}^N x_i$
Coproduct (force
\textstyle
)
\textstyle \coprod_{i=1}^N x_i
$\textstyle \coprod_{i=1}^N x_i$
Limit
\lim_{n \to \infty}x_n
$\lim_{n \to \infty}x_n$
Limit (force
\textstyle
)
\textstyle \lim_{n \to \infty}x_n
$\textstyle \lim_{n \to \infty}x_n$
Integral
\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx
$\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx$
Integral (alternate limits style)
\int_{1}^{3}\frac{e^3/x}{x^2}\, dx
$\int_{1}^{3}\frac{e^3/x}{x^2}\, dx$
Integral (force
\textstyle
)
\textstyle \int\limits_{-N}^{N} e^x\, dx
$\textstyle \int\limits_{-N}^{N} e^x\, dx$
Integral (force
\textstyle
, alternate limits style)
\textstyle \int_{-N}^{N} e^x\, dx
$\textstyle \int_{-N}^{N} e^x\, dx$
Double integral
\iint\limits_D \, dx\,dy
$\iint\limits_D \, dx\,dy$
Triple integral
\iiint\limits_E \, dx\,dy\,dz
$\iiint\limits_E \, dx\,dy\,dz$
\iiiint\limits_F \, dx\,dy\,dz\,dt
$\iiiint\limits_F \, dx\,dy\,dz\,dt$
Line or path integral
\int_C x^3\, dx + 4y^2\, dy
$\int_C x^3\, dx + 4y^2\, dy$
Closed line or path integral
\oint_C x^3\, dx + 4y^2\, dy
$\oint_C x^3\, dx + 4y^2\, dy$
Intersections
\bigcap_1^n p
$\bigcap_1^n p$
Unions
\bigcup_1^k p
$\bigcup_1^k p$

### Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions
\frac{2}{4}=0.5
$\frac{2}{4}=0.5$
Small Fractions
\tfrac{2}{4} = 0.5
$\tfrac{2}{4} = 0.5$
Large (normal) Fractions
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
$\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a$
Large (nested) Fractions
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
$\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a$
Binomial coefficients
\binom{n}{k}
$\binom{n}{k}$
Small Binomial coefficients
\tbinom{n}{k}
$\tbinom{n}{k}$
Large (normal) Binomial coefficients
\dbinom{n}{k}
$\dbinom{n}{k}$
Matrices
\begin{matrix}
x & y \\
z & v
\end{matrix}
$\begin{matrix} x & y \\ z & v \end{matrix}$
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
$\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}$
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}
$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
$\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
$\begin{pmatrix} x & y \\ z & v \end{pmatrix}$
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)

$\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)$
Case distinctions
f(n) =
\begin{cases}
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
Multiline equations
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}

\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$
Multiline equations (more)
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$
Breaking up a long expression so that it wraps when necessary, at the expense of destroying correct spacing

$f(x) \,\!$
$= \sum_{n=0}^\infty a_n x^n$
$= a_0+a_1x+a_2x^2+\cdots$



$f(x) \,\!$$= \sum_{n=0}^\infty a_n x^n$$= a_0 +a_1x+a_2x^2+\cdots$

Simultaneous equations
\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
$\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}$
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

$\begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array}$

### Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
( \frac{1}{2} )
$( \frac{1}{2} )$
Good
\left ( \frac{1}{2} \right )
$\left ( \frac{1}{2} \right )$

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses
\left ( \frac{a}{b} \right )
$\left ( \frac{a}{b} \right )$
Brackets
\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
$\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack$
Braces
\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
$\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace$
Angle brackets
\left \langle \frac{a}{b} \right \rangle
$\left \langle \frac{a}{b} \right \rangle$
Bars and double bars
\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
$\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|$
Floor and ceiling functions:
\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
$\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil$
Slashes and backslashes
\left / \frac{a}{b} \right \backslash
$\left / \frac{a}{b} \right \backslash$
Up, down and up-down arrows
\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
$\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow$
Delimiters can be mixed,
as long as \left and \right match
\left [ 0,1 \right )

\left \langle \psi \right |
$\left [ 0,1 \right )$
$\left \langle \psi \right |$
Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X
$\left . \frac{A}{B} \right \} \to X$
Size of the delimiters
\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/<code>
| $\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]$
|-
| <code>\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
$\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle$
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
$\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|$
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
$\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil$
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
$\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow$
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
$\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow$
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
$\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash$

## Alphabets and typefaces

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
$\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!$
\Eta \Theta \Iota \Kappa \Lambda \Mu
$\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!$
\Nu \Xi \Pi \Rho \Sigma \Tau
$\Nu \Xi \Pi \Rho \Sigma \Tau\,\!$
\Upsilon \Phi \Chi \Psi \Omega
$\Upsilon \Phi \Chi \Psi \Omega \,\!$
\alpha \beta \gamma \delta \epsilon \zeta
$\alpha \beta \gamma \delta \epsilon \zeta \,\!$
\eta \theta \iota \kappa \lambda \mu
$\eta \theta \iota \kappa \lambda \mu \,\!$
\nu \xi \pi \rho \sigma \tau
$\nu \xi \pi \rho \sigma \tau \,\!$
\upsilon \phi \chi \psi \omega
$\upsilon \phi \chi \psi \omega \,\!$
\varepsilon \digamma \vartheta \varkappa
$\varepsilon \digamma \vartheta \varkappa \,\!$
\varpi \varrho \varsigma \varphi
$\varpi \varrho \varsigma \varphi\,\!$
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
$\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!$
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
$\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!$
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
$\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!$
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
$\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!$
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
$\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!$
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
$\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!$
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
$\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!$
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
$\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!$
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
$\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!$
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
$\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!$
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
$\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!$
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
$\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!$
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
$\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!$
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
$\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!$
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
$\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!$
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
$\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!$
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
$\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!$
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
$\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!$
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
$\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!$
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
$\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!$
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
$\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!$
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
$\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!$
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
$\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!$
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
$\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!$
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
$\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!$
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
$\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!$
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
$\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!$
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
$\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!$
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
$\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!$
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
$\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!$
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
$\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!$
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
$\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!$
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
$\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!$
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
$\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!$
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
$\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!$
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
$\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!$
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
$\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!$
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
$\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!$
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
$\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!$
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
$\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!$
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
$\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!$
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
$\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!$
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
$\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!$
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
$\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!$
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
$\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!$
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
$\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!$
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
$\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!$
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
$\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!$
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
$\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!$
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
$\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!$
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
$\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!$
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
$\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!$
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
$\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!$
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
$\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!$
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
$\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!$
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
$\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!$
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
$\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!$
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
$\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!$
Hebrew
\aleph \beth \gimel \daleth
$\aleph \beth \gimel \daleth\,\!$
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} $\mbox{abc}$ $\mbox{abc} \,\!$
mixed italics (bad) \mbox{if} n \mbox{is even} $\mbox{if} n \mbox{is even}$ $\mbox{if} n \mbox{is even} \,\!$
mixed italics (good) \mbox{if }n\mbox{ is even} $\mbox{if }n\mbox{ is even}$ $\mbox{if }n\mbox{ is even} \,\!$
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} $\mbox{if}~n\ \mbox{is even}$ $\mbox{if}~n\ \mbox{is even} \,\!$

## Color

Equations can use color:

• {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$
• x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$

See here for all named colors supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See.

## Formatting issues

### Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b $a \qquad b$
quad space a \quad b $a \quad b$
text space a\ b $a\ b$
text space without PNG conversion a \mbox{ } b $a \mbox{ } b$
large space a\;b $a\;b$
medium space a\>b [not supported]
small space a\,b $a\,b$
no space ab $ab\,$
small negative space a\!b $a\!b$

### Alignment with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like $\int_{-N}^{N} e^x\, dx$ should look good.

If you need to align it otherwise, use
<math style="vertical-align:-100%;">...[/itex]
and play with the
vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

### Forced PNG rendering

To force the formula to render as PNG, add
\,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode. You can also use
\,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike
\,
.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} $a^{c+2}$
a^{c+2} \, $a^{c+2} \,$
a^{\,\!c+2} $a^{\,\!c+2}$
a^{b^{c+2}} $a^{b^{c+2}}$ (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, $a^{b^{c+2}} \,$ (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 $a^{b^{c+2}}\approx 5$ (due to "$\approx$" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} $a^{b^{\,\!c+2}}$
\int_{-N}^{N} e^x\, dx $\int_{-N}^{N} e^x\, dx$

This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

## Examples

$ax^2 + bx + c = 0$

$ax^2 + bx + c = 0$


### Quadratic Polynomial (Force PNG Rendering)

$ax^2 + bx + c = 0\,\!$

$ax^2 + bx + c = 0\,\!$


$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$


### Tall Parentheses and Fractions

$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$

$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$

$S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}$

$S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}$



### Integrals

$\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$

$\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$


### Summation

$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}$

$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}$


### Differential Equation

$u'' + p(x)u' + q(x)u=f(x),\quad x>a$

$u'' + p(x)u' + q(x)u=f(x),\quad x>a$


### Complex numbers

$|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)$

$|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)$


### Limits

$\lim_{z\rightarrow z_0} f(z)=f(z_0)$

$\lim_{z\rightarrow z_0} f(z)=f(z_0)$


### Integral Equation

$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$

$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$


### Example

$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$

$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$


### Continuation and cases

$f(x) = \begin{cases}1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}$

$f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases}$


### Prefixed subscript

${}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}$

${}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}$


### Fraction and small fraction

$\frac {a}{b}$   $\tfrac {a}{b}$
$\frac {a}{b}\ \tfrac {a}{b}$


### Unicode vs TeX comparison

 unicode TeX See ⟦ [\![ $[\![$ { \{ $\{$ ∥ \| $\|$ } \} $\}$ ℵ \aleph $\aleph$ α \alpha $\alpha$ ⨿ \amalg $\amalg$ ∠ \angle $\angle$ ≈ \approx $\approx$ ∗ \ast $\ast$ ≍ \asymp $\asymp$ \ \backslash $\backslash$ β \beta $\beta$ ⋂ \bigcap $\bigcap$ ◯ \bigcirc $\bigcirc$ ⋃ \bigcup $\bigcup$ ⨀ \bigodot $\bigodot$ ⨁ \bigoplus $\bigoplus$ ⨂ \bigotimes $\bigotimes$ ⨆ \bigsqcup $\bigsqcup$ ▽ \bigtriangledown $\bigtriangledown$ △ \bigtriangleup $\bigtriangleup$ ⨄ \biguplus $\biguplus$ ⋀ \bigwedge $\bigwedge$ ⋁ \bigvee $\bigvee$ ⊥ \bot $\bot$ ⋈ \bowtie $\bowtie$ □ \Box $\Box$ ∙ \bullet $\bullet$ ∩ \cap $\cap$ ⋅ \cdot $\cdot$ ⋯ \cdots $\cdots$ χ \chi $\chi$ ∘ \circ $\circ$ ♣ \clubsuit $\clubsuit$ ≅ \cong $\cong$ ∐ \coprod $\coprod$ ∪ \cup $\cup$ † \dagger $\dagger$ ⊣ \dashv $\dashv$ ‡ \ddagger $\ddagger$ ⋱ \ddots $\ddots$ δ \delta $\delta$ Δ \Delta $\Delta$ ◇ \Diamond $\Diamond$ ⋄ \diamond $\diamond$ ♢ \diamondsuit $\diamondsuit$ ÷ \div $\div$ ≐ \doteq $\doteq$ ↓ \downarrow $\downarrow$ ⇓ \Downarrow $\Downarrow$ ℓ \ell $\ell$ ∅ \emptyset $\emptyset$ ϵ \epsilon $\epsilon$ ≡ \equiv $\equiv$ η \eta $\eta$ ∃ \exists $\exists$ ♭ \flat $\flat$ ∀ \forall $\forall$ ⌢ \frown $\frown$ γ \gamma $\gamma$ Γ \Gamma $\Gamma$ ≥ \ge $\ge$ ≥ \geq $\geq$ ← \gets $\gets$ ≫ \gg $\gg$ ℏ \hbar $\hbar$ ♡ \heartsuit $\heartsuit$ ↩ \hookleftarrow $\hookleftarrow$ ↪ \hookrightarrow $\hookrightarrow$ ℑ \Im $\Im$ ı \imath $\imath$ ∈ \in $\in$ ∞ \infty $\infty$ ∫ \int $\int$ ι \iota $\iota$ j \jmath $\jmath$ κ \kappa $\kappa$ λ \lambda $\lambda$ Λ \Lambda $\Lambda$ ∧ \land $\land$ ⟨ \langle $\langle$ ⟪ \langle\!\langle $\langle\!\langle$ { \lbrace $\lbrace$ [ \lbrack $\lbrack$ ⌈ \lceil $\lceil$ ≤ \le $\le$ ⇐ \Leftarrow $\Leftarrow$ ← \leftarrow $\leftarrow$ ↽ \leftharpoondown $\leftharpoondown$ ↼ \leftharpoonup $\leftharpoonup$ ↔ \leftrightarrow $\leftrightarrow$ ⇔ \Leftrightarrow $\Leftrightarrow$ ≤ \leq $\leq$ ⌊ \lfloor $\lfloor$ ≪ \ll $\ll$ ¬ \lnot $\lnot$ ⟸ \Longleftarrow $\Longleftarrow$ ⟵ \longleftarrow $\longleftarrow$ ⟺ \Longleftrightarrow $\Longleftrightarrow$ ⟷ \longleftrightarrow $\longleftrightarrow$ ⟼ \longmapsto $\longmapsto$ ⟹ \Longrightarrow $\Longrightarrow$ ⟶ \longrightarrow $\longrightarrow$ ∨ \lor $\lor$ ↦ \mapsto $\mapsto$ ∣ \mid $\mid$ ⊨ \models $\models$ ∓ \mp $\mp$ μ \mu $\mu$ ∇ \nabla $\nabla$ ♮ \natural $\natural$ ≠ \ne $\ne$ ↗ \nearrow $\nearrow$ ¬ \neg $\neg$ ≠ \neq $\neq$ ∋ \ni $\ni$ ≉ \not\approx $\not\approx$ ≭ \not\asymp $\not\asymp$ ≇ \not\cong $\not\cong$ ≢ \not\equiv $\not\equiv$ ≱ \not\geq $\not\geq$ ≰ \not\leq $\not\leq$ ⊀ \not\prec $\not\prec$ ⋠ \not\preceq $\not\preceq$ ≁ \not\sim $\not\sim$ ≄ \not\simeq $\not\simeq$ ⋢ \not\sqsubseteq $\not\sqsubseteq$ ⋣ \not\sqsupseteq $\not\sqsupseteq$ ⊄ \not\subset $\not\subset$ ⊈ \not\subseteq $\not\subseteq$ ⊁ \not\succ $\not\succ$ ⋡ \not\succeq $\not\succeq$ ⊅ \not\supset $\not\supset$ ⊉ \not\supseteq $\not\supseteq$ ≠ \not= $\not=$ ν \nu $\nu$ ↖ \nwarrow $\nwarrow$ ⊙ \odot $\odot$ ∮ \oint $\oint$ ω \omega $\omega$ Ω \Omega $\Omega$ ⊖ \ominus $\ominus$ ⊕ \oplus $\oplus$ ⊘ \oslash $\oslash$ ⊗ \otimes $\otimes$ ∥ \parallel $\parallel$ ∂ \partial $\partial$ ⊥ \perp $\perp$ ϕ \phi $\phi$ Φ \Phi $\Phi$ π \pi $\pi$ Π \Pi $\Pi$ ± \pm $\pm$ ≺ \prec $\prec$ ≼ \preceq $\preceq$ ′ \prime $\prime$ ∏ \prod $\prod$ ∝ \propto $\propto$ ψ \psi $\psi$ Ψ \Psi $\Psi$ ⟩ \rangle $\rangle$ ⟫ \rangle\!\rangle $\rangle\!\rangle$ } \rbrace $\rbrace$ ] \rbrack $\rbrack$ ⌉ \rceil $\rceil$ ℜ \Re $\Re$ ⌋ \rfloor $\rfloor$ ρ \rho $\rho$ → \rightarrow $\rightarrow$ ⇒ \Rightarrow $\Rightarrow$ ⇁ \rightharpoondown $\rightharpoondown$ ⇀ \rightharpoonup $\rightharpoonup$ ⇌ \rightleftharpoons $\rightleftharpoons$ ↘ \searrow $\searrow$ ∖ \setminus $\setminus$ ♯ \sharp $\sharp$ σ \sigma $\sigma$ Σ \Sigma $\Sigma$ ∼ \sim $\sim$ ≃ \simeq $\simeq$ ⌣ \smile $\smile$ ♠ \spadesuit $\spadesuit$ ⊓ \sqcap $\sqcap$ ⊔ \sqcup $\sqcup$ ⊏ \sqsubset $\sqsubset$ ⊑ \sqsubseteq $\sqsubseteq$ ⊐ \sqsupset $\sqsupset$ ⊒ \sqsupseteq $\sqsupseteq$ ⋆ \star $\star$ ⊂ \subset $\subset$ ⊆ \subseteq $\subseteq$ ≻ \succ $\succ$ ≽ \succeq $\succeq$ ∑ \sum $\sum$ ⊃ \supset $\supset$ ⊇ \supseteq $\supseteq$ √ \surd $\surd$ ↙ \swarrow $\swarrow$ τ \tau $\tau$ θ \theta $\theta$ Θ \Theta $\Theta$ × \times $\times$ → \to $\to$ ⊤ \top $\top$ △ \triangle $\triangle$ ◁ \triangleleft $\triangleleft$ ▷ \triangleright $\triangleright$ ↑ \uparrow $\uparrow$ ⇑ \Uparrow $\Uparrow$ ↕ \updownarrow $\updownarrow$ ⇕ \Updownarrow $\Updownarrow$ ⊎ \uplus $\uplus$ υ \upsilon $\upsilon$ Υ \Upsilon $\Upsilon$ ε \varepsilon $\varepsilon$ φ \varphi $\varphi$ ϖ \varpi $\varpi$ ϱ \varrho $\varrho$ ς \varsigma $\varsigma$ ϑ \vartheta $\vartheta$ ⊢ \vdash $\vdash$ ⋮ \vdots $\vdots$ ∧ \wedge $\wedge$ ∨ \vee $\vee$ ∣ \vert $\vert$ ∥ \Vert $\Vert$ ℘ \wp $\wp$ ≀ \wr $\wr$ ξ \xi $\xi$ Ξ \Xi $\Xi$ ζ \zeta $\zeta$ ⟧ ]\!] $]\!]$ ο o $o$